Visualization using Python

Python is a powerful programming language. It can be used for developing almost all type of applications. I have used python for developing IoT applications, Data Science related applications, Statistical applications, Web Services, Automation, Networking, Web Applications, Big Data processing, visualization etc.

In this blog post, I will be introducing some of theĀ  powerful visualization libraries available in python.

  • Pandas Visualization – The core of this library is matplotlib.
  • Matplotlib – This is one of the most popular visualization libraries in python.
  • ggplot – Based on R’s ggplot2
  • Seaborn – A data visualization library based on matplotlib. It provides a high-level interface for drawing statistical graphics.
  • Plotly – An open-source, interactive graphing library for Python

 

What is Pandas ?

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Pandas comes with two primary data structures

  • Series – (One dimensional)
  • DataFrame – (Two dimensional)

These two structures helps us to handle majority of the usecases. Those who are handy with R programming language can easily implement their logic in a much powerful and better way using python pandas. Users get almost all the functionalities present in the R’s dataframe. Pandas is built on top of the popular Numpy package.

Pandas has very good timeseries data handling and processing capability. We can avoid unnecessary loops and logic by implementing pandas. It is capable of doing

  • Frequency conversion (Eg: creating 5 minute data using a dataset with 1 second frequency),
  • Data range generation
  • Moving window statistics
  • date shifting etc.

Since there are so many documents related to the pandas, I am not going to explain pandas in detail. I will be explaining some usecases with pandas implementation in my further blog posts. I will be using pandas and other scientific libraries extensively in my upcoming blog posts.